1. Introduction
  2. 1. Bioinformatics
    1. 1.1. bioconda
    2. 1.2. bioconductor
  3. 2. Coding tools
    1. 2.1. coding conventions
    2. 2.2. integrated development environments (IDEs)
    3. 2.3. licensing
    4. 2.4. markdown syntax
    5. 2.5. regular expressions
    6. 2.6. user experience
    7. 2.7. version control
  4. 3. Command line
    1. 3.1. Unix shell / linux command line
    2. 3.2. conda (software installation)
    3. 3.3. linux tools
  5. 4. Data analyses
    1. 4.1. differential expression analysis
    2. 4.2. single cell analysis
  6. 5. Data downloads / reanalysis
    1. 5.1. SRA, ENA, NCBI, Ensembl
    2. 5.2. TCGA, TARGET, GTEx
  7. 6. Data formats and tools
    1. 6.1. fastq: sequencing data
    2. 6.2. tab-/comma-separated values
    3. 6.3. YAML syntax
  8. 7. Data presentation
    1. 7.1. color palettes
    2. 7.2. grammar of graphics
    3. 7.3. interactive reporting
  9. 8. Programming Languages
    1. 8.1. python
    2. 8.2. R
    3. 8.3. Rust
  10. 9. Reference data
    1. 9.1. liftover between references
  11. 10. Statistics
    1. 10.1. bayesian statistics (priors, likelihoods and posterior distributions)
    2. 10.2. frequentist statistics (hypothesis tests, p-values, etc.)
  12. 11. Workflow management
    1. 11.1. Nextflow
    2. 11.2. Snakemake
  13. 12. Working on servers
    1. 12.1. persistent shell sessions (screen, tmux)
    2. 12.2. ssh login
    3. 12.3. data transfer

A collection of resources for data scientists (not only) in bioinformatics

Coding tools